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1. INTRODUCTION

1.1 CIRCULATING FLUIDIZED BEDS

Circulating Fluidized beds are a relatively new method of forcing chemical reactions to

occur in chemical and petroleum industries. A circulating Fluidized bed is a closed

system used to mix a solid with a gas in order to force a chemical reaction. Typically in

an industrial setting, CFBs implement combustion as part of the process to speed up the

rate of reaction. The CFB under consideration is a “cold” circulating fluidized bed,

meaning there is no combustion component in its process. The reason for eliminating

combustion from this unit is to isolate and study the effects of the internal pressure of the

system, independent of temperature effects.

A schematic of the CFB is shown in figure 1. One of the major problems in the study and

design of these large complex systems is the

modeling and prediction of their

characteristic behavior. Currently there is no

way to construct a reliable model of such a

complex system using traditional methods.

Three major obstacles in characterizing the

system are:

• Chaotic nature of the system

• Non-linearity of the system
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• Number of immeasurable unknowns internal to the system

Artificial Neural Networks (ANNs) have the ability to characterize the system, and can

overcome all three of these obstacles. Neural Networks provide a simple way to construct

both of these tools. Neural Networks have the greatest promise in the realm of nonlinear

control problems. This stems from their theoretical ability to approximate arbitrary

nonlinear mappings.

1.2 NEURAL NETWORKS

Neural networks generally consist of a number of interconnected processing elements or

neurons.  How the inter-neuron connections are arranged and the nature of the

connections determines the structure of the network.  Its learning algorithm governs how

the strength of the connections are adjusted or trained to achieve a desired overall

behavior of the network.  A simple feed forward neural network is shown in Figure 2.

CFB
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Figure 2. Representation of a Feed forward Neural Network

In feed forward network, the neurons are generally grouped into layers. Signals flow

from the input layer through to the output layer via unidirectional connections, the

neurons are being connected from one layer to the next, but not within the same layer.

Between the input layer and the output layer, we have the hidden layers. As the

complexity of the problem being solved increases, the size and number of the hidden

layer increases. A supervised learning algorithm adjusts the strengths or weights of the

inter-neuron connections according to the difference between the desired and actual

network outputs corresponding to a given input.  Thus, supervised learning requires a

“teacher” or “supervisor” to provide desired or target output signals.

1.2.1. Backpropagation Algorithm

An example of such supervised learning algorithm is Backpropagation (BP) algorithm.

Multi-Layer Perceptrons (MLP) are perhaps the best-known type of feed forward

networks. MLP has generally three layers: an input layer, an output layer and an

intermediate or hidden layer.  Neurons in the input layer only act as buffers for

distributing the input signal xi to neurons in the hidden layer. Each neuron j in the hidden

layer sums up its input signals xi after weighting them with the strengths of the respective

connections wji from the input layer and computes its outputs yj as a function f of the

sum, viz.

yj=f(Σwjixi) (1)

f can be a simple threshold function or a sigmoid, hyperbolic tangent or radial basis

function.
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The output of neurons in the output layer is computed similarly.  The BP algorithm, a

gradient descent algorithm, is the most commonly adopted MLP training algorithm.  It

gives the change ∆wji in the weight of a connection between neurons j and i as follows:

∆wji =ηδ jxi (2)

Where η is a parameter called the learning rate and δ j is a factor depending on whether

neuron j is an output neuron or a hidden neuron. For output neurons,
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In equation (3), netj is the total weighted sum of input signals to neuron j and yj
(t ) is the

target output of neuron j.

As there are no target outputs for hidden neurons, in equation (4), the difference between

the target and actual output of a hidden neuron j is replaced by the weighted sum of the δq

terms already obtained for neurons q connected to the output of j.  Thus, iteratively,

beginning with the output layer, the δ term is computed for neurons in all layers and

weight updates determined for all connections. The steps have been clearly illustrated in

Figure 3.
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Figure 3. Backpropagation Algorithm

1.2.2. Backpropagation Algorithm: The Levenberg-Marquardt (LM) Method

The LM method, a second order optimization method, was used to determine the weights

in the NN.  Network training aims at minimizing the sum of squares of errors, the errors

measured as the difference between the calculated output and the desired output.

Minimizing the quadratic error is not always the best way of training a NN, but for this
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application, it suffices.  Most algorithms for least-square optimization problems use

either steepest descent or Taylor-series models.  The Levenberg-Marquardt method uses

an interpolation between the approaches based on the maximum neighborhood (a “trust

region”) in which the truncated Taylor series gives an adequate representation of the

nonlinear model.  The method has been found to be advantageous compared to other

methods, which use only one of the two approaches.  This makes LM training much

faster than gradient descent.  For networks that are not explicitly recurrent LM training is

very good method.

The equations for changing the weights during training are given as follows:
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1.3. BLACK-BOX MODELING APPROACH

These is the most common form of supervised learning, giving the NN, off-line data of

the plant, and mapping the correlation between the inputs and outputs, forming a black-

box model of the plant as shown in Fig 4.  In the system under consideration, we have

tried to model the mass flow rate as a function of the differential pressures in the

standpipe section and the flow rate of the aeration. The ultimate aim of the work is to
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develop a neural network controller to manipulate the mass flow rate by varying the

aeration.

Figure 5 shows the schematic of Black Box modeling approach as implemented on the

present CFB.

The tricky part in modeling the system was the collection of data to span over the entire

operating range. The data points had to be chosen in such a way that all the system

dynamics were captured. Figure 6 shows a sample set of data variables collected,

showing the variation of each variable over that period. Note that all variables have been

scaled between 0 and 1 to fit on same graph.
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Figure 4. Schematic of Black Box modeling
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Figure 6.  Sample set of scaled data points

 Out of the 3600 data points collected, 1800 points were used for modeling and the

remaining points were used for extrapolation of the results over unseen data points for

validation of the obtained model.

Determining the size of the layers is an important issue.  One of the most used

approaches is the constructive method.  Constructive methods determine the topology of

the network during the training phase as an integral part of the learning algorithm.  The

common strategy of the constructive methods is to start with a small network, train the

network until the performance criterion has been reached, add a new node and continue

until a ‘global’ performance in terms of error criterion has reached an acceptable level.

The expected benefits using such algorithms are:

• Trial-and-Error: The usual trial and error process for finding the ‘best’ topology is

avoided.
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• Speed: Because of fewer free parameters the network is expected to converge

faster.

The main objective of this work is to train the neural network model to provide a suitable

off-line model that simulates CFB operation. If the neural network plant model is capable

of approximating with sufficient accuracy the highly complex process in the CFB, it may

be used within a model based control strategy.

2. MODELING THE CFB

In the system under consideration, we have modeled the mass flow rate as a function of

the differential pressures in the standpipe section and the flow rate of the aeration. The

ultimate aim is to develop a neural network controller to manipulate the mass flow rate

by varying the aeration. A P & I diagram of the CFB is shown in Figure 7.

The major variables used for modeling and their range are as follows:

 PDT 841

 PDT 842

 PDT 811A

 PDT 801

 PDT 853

 PDT 864 

 PIC 941          Back pressure (Po)          Range 0 – 2.6 psig

 F874          Mass flow rate (Ms)          Range 600 – 6000 lb/hr

 FY 171          Aeration rate (Fm)          Range 300 – 700 scfh

Riser Pressure (Pr) Range 0.3 – 0.7 psid

Upper Stand pipe pressure Range 0 – 0.4 psid
(Psu)
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We have also incorporated the time-delayed signals as FY171 (t-1) and FY 171 (t-2) to

enable capturing the delayed effects of respective variables as FY 171 on the system.

Here all the PDTs and PIC represent the differential pressures in the standpipe, F874

represents the mass flow rate and FY 171 represents the aeration.

To model the system we have used multi layered neural network with neurons in the

input layer, hidden layer and the output layer. We have used the Levenberg Marquardt

(LM) algorithm for training the neural network. The training was done using the Neural

Network toolbox in Matlab. The tricky part in modeling the system was the collection of

data to span over the entire operating range. Data was collected by varying move air

(aeration) in a sinusoidal manner over its whole range. All other variables were also

being manipulated manually over their respective range. The data points had to be chosen

in such a way that all the system dynamics were captured. Out of the 3600 data points

collected, 1800 points were used for modeling and the remaining points were used for

extrapolation of the results over unseen data points for validation of the obtained model.

The blue signal in the plots is the plant response and the red signal is the neural network

output. The first 1800 points represent the data points used for training while the

remaining points were used for validation of the model.
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Figure 7. P & I diagram of the CFB.
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3. RESULTS AND DISCUSSION

3.1. MODELING

Two related problems that must be addressed in training a NN are: how to determine the

architecture (how many neurons and layers) and how to avoid over fitting. Since NN is

highly redundant and over-parameterized, it is easy to fit the noise in the data as well as

signal.  To avoid this problem, the standard NN modeling practice is to separate the data

into a  “training set”, which is used to train the model, and a “testing set”, which is used

to determine when to stop training. Only the training set is used to adjust the network

weights. During training, the model is evaluated periodically using the training set.  A

decrease in testing performance signals that over fitting is setting in.  In addition, a

“validation set” may be set aside for evaluating the model on data that was not involved

in the training process. We have also incorporated the time-delayed signals of the

F874(t-2)

F874(t-1)

PDT841

PDT842

PDT811A

PDT801

PDT853

PDT864

PIC941

Neural
Network
(MISO)

F874 (t)

Z-1

Z-1

Figure 8. MISO Neural Network

FY 171
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predicted variable to enable capturing the delayed effects of that variable on the system.

Also normalizing the variable within the range of [0,1], has given better results with a

smaller network and better approximation.

3.1.1 Multi Input Single Output (MISO) Neural Network Model

A schematic of the MISO neural network model for the prediction of the Mass flow rate

(Ms) is shown in Figure 12.

The training and the extrapolation data for the two most dominating variables of the CFB,

the Mass flow rate and the Aeration are being presented in Tables 1 and 2. The value of

Mean Squared Error (MSE) for both the training set and the Test set indicate the optimal

network for the process variable and also help in reducing the chances of over-fitting the

data.  The Network Size represents the number of hidden layers and the number of

neurons in the hidden layer.

Table 1. Training and Testing data of Mass Flow Rate ( Ms).

Network
Size

Training
Algorithm

Activation
Function

Training
Time (min)

No. of
Iterations

MSE
Error

MSE
Error

Training Test

5 LM Tansig 0.3160 25 0.0021 0.0034

10 “ Tansig 0.3538 “ 0.0019 0.0034

“ “ “ 0.4271 50 0.0018 0.0033

“ “ Logsig 0.3544 25 0.0021 0.0036

15 “ Tansig 0.3710 “ 0.0021 0.0032

” “ “ 0.4822 50 0.0019 0.0034

25 “ “ 0.4428 25 0.0020 0.0034

25 GD Tansig 0.3266 “ 0.0291 0.0321
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Table 2. Training and Testing data of Aeration (Fy).

Network
Size

Training
Algorithm

Activation
Function

Training
Time (min)

No. of
Iterations

MSE
Error

MSE
Error

Training Test

5 LM Tansig 0.3392 25 9.86e-6 2.55e-5

10 “ Tansig 0.3744 “ 2.12e-5 6.50e-5

“ “ “ 0.5403 50 8.94e-6 1.63e-5

“ “ Logsig 0.5011 25 0.0267 0.0275

15 “ Tansig 0.4698 “ 9.39e-6 1.49e-5

“ “ “ 0.6903 50 9.19e-6 1.33e-5

25 ” “ 0.6913 25 3.46e-5 1.12e-4

25 GD “ 0.3435 “ 0.1224 0.1226

It is clearly evident from Table 1 and Table 2, the optimal NN for the modeling of the

Mass flow rate and Aeration Rate is a single hidden layer of 15 neurons and “Tansig” as

the activation function which is represented in bold. Aeration rate needed more number

of iterations for better prediction, so as to minimize the error in the Test data.  Note from

the Tables, the “logsig” activation function was not able to do a good job here. And also

we see that the LM training algorithm is superior to the Gradient Descent (GD) training

algorithm previously used in modeling. In Figure 11, a magnified view of the

extrapolation is shown wherein the variables have been varied over the short range by

manipulating the back pressure Po thereby affecting riser pressure, which in turn affects

the mass flow rate. The network extrapolates the mass flow rate correctly even in this

interacting condition proving that it has correctly learnt this intricate relationship between
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variables. The plots of the training and the extrapolation of  Mass Flow Rate, Ms (F874)

are presented in the Figures 9 & 10. The plots clearly show that the Neural Network

model has not only learnt the system dynamics but was also able to extrapolate over

unseen data, which was an acid test for the validity of the model. Only the data from 1-

1800 sec was given for the training, and the rest of the data was unseen by the Neural

Network during training. It was only in the testing phase that data was being used to test

the Trained Network.
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Figure 11.  Neural network Extrapolation of Mass Flow rate (Ms)

3.1.2. Multi Input Multi Output (MIMO) Neural Network model

A schematic of the Multi Input Multi Output Neural Network model is shown in Figure
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Figure 12. MIMO Neural Network
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12. The inputs are at time 't' and the NN predicts outputs for time 't+1'.  The plots

showing the extrapolation by the MIMO Neural Network model are shown in the Figures

13 through 19.
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3.2. DEVELOPMENT OF CONTROLLER

3.2.1. Inverse Model Control

Consider a system transfer function 
)(
)(
sX
sY

where Y(s) is the system output and X(s) is the

input to the system. The significance of the transfer characteristics in system and control

theory is based on the fact that response of a static system to an arbitrary excitation can

be computed as a product of its transfer characteristics and of the excitation. Similarly,

the transform of the response of a dynamical system can be expressed as a product of the

transfer function and transform of the excitation.

For a plant that is completely known, any desired relationship between input and

response can be realized by a simple open loop control configuration as shown in Figure

20. The feed forward controller consists of two parts connected in cascade. The second

one cancels the process transfer function because its own transfer function has been

chosen as the inverse of the known process transfer function. In addition, the front part of

the controller introduces the desired overall transfer function of the controller and the

plant equal to D. Thus the controller’s transfer function should be equal to D/P . This

approach is known as inverse control since the most essential part of the controller should

provide the inverse of the plants transfer function. The transfer function of the inverse

control
signal

      x
input

      y
response

Desired
Response

D
1/P

Process

P

Controller

Figure 20. Control of Process P to achieve the desired
response.
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feed forward control system from the figure computed between its input and output

becomes 
)(
)(

)(
sX
sY

sD = . In this approach involving the cascade connection of the

controller driving the plant and involving no feedback, the neural controller that acts as

the plant inverse needs to be designed.

For the system under consideration, the inverse model was derived from a neural network

that predicted the value of the aeration required to produce a desired mass flow rate. This

predicted value of aeration was used to control the mass flow rate to a desired set-point

value.

To model the system we have used a 3-layered neural network with 10 neurons in the

input layer, 15 neurons in the hidden layer and 1 neuron in the output layer. We have

used the Levenberg Marquardt (LM) algorithm for training purposes. The data points had

FY171(t-2)

FY171(t-1)

PDT841

PDT842

PDT811A

PDT801

PDT853

PDT864

PIC941

F874

Neural
Network
(MISO)

FY171 (t)

Z-1

Z-1

Figure 21. MISO Neural Network for Controller
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to be chosen in such a way that all the system dynamics were captured. Out of the 3600

data points collected, 1800 points were used for modeling and the remaining points were

used for extrapolation of the results over unseen data points for validation of the obtained

model. The trained controller is implemented as an Inverse model of the plant which is

explained later. Detailed plots showing the training of the Neural Network controller over

the data set being provided and its extrapolation are being shown in Figures 22 & 23.
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3.2.2. Controller implementation

We have implemented a feed forward inverse controller where the neural network

predicts the values of the aeration rate (FY 171) to achieve a desired value of the mass

flow rate as shown in Figure 24. We tested the controller and found it to have a

stabilizing effect on the plant. A simulation of this controller is shown in Figure 25.
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Figure 24. Schematic of Implementation of NN controller on the CFB
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4. CONCLUSIONS

With the use of efficient back propagation training algorithm, we were able to make an

efficient and accurate model of the CFB. Previous attempts were restricted to the data set

and failed on extrapolating the results over unseen data, where we have succeeded.

Equipped with an accurate model, the next step is to design and implement an appropriate

controller for the CFB.

We are now working on various techniques of implementing the controller, like Internal

model control that incorporates feedback signal and relays information about the amount

of correction necessary for the control signal to achieve more accurate control. Also,

efforts are underway to make the model adaptive to any changes in the plant dynamics.

*  *  *



37

4. REFERENCES

1. Daniel Vandel, Asad Davari and Parviz Famouri, “ Modeling of Fluidized bed

with Neural Networks”, Proceedings of 32nd IEEE SSST, March 2000, FAMU-

FSU Tallahassee, Florida.

2. Asad Davari, Sridhar Macha and Rammohan Sankar, “Neural Network predictor

of a circulating fluidized bed”, Proceedings of 33rd IEEE SSST, March 2000,

Ohio Univ, Athens, Ohio.

3. Asad Davari, Sridhar Macha and Rammohan Sankar, “Improved Neural Networks

modeling and predicting of circulating Fluidized Beds”, Proceedings of the

IASTED Intl. Conf., May 2001, Pittsburgh, Pennsylvania.

4. A. Davari, and D. Vandel, “ Modeling and Predicting the Output of a Circulating

Fluidized Bed with Neural Network,” Technical Report, DOE/NETL October

1999.

5. A. Davari, and R. Sankar, “Neural Network Predictor of the Output of a

Circulating Fluidized Bed,” Technical Report, DOE/NETL November 2000.

6. A. Davari, and S. Macha, “ Improved Model of Circulating Fluidizes Bed with

Neural Networks," Technical Report, DOE/NETL November 2000

7. Levenberg, K., “ A method for the solution of certain nonlinear problems in least

squares”, Quart. Appl. Math., n 2, pp164-168, 1944.

8. Marquardt, D.W., “ An algorithm for least-squares estimation of nonlinear

parameters”, J. Soc. Indust. Appl. Math., n 11, pp 431-441, 1963.



38

9. Narendra, K.S. and Parthasarathy, K., “Identification and Control of Dynamical

systems using NN”, IEEE Transactions on NN, v 1, n 1, pp 4-27, 1990.

10. Hornik, K., and Stinchcombe, "Multilayer feed forward networks are universal

approximators, Neural Networks", n 2, pp 359-366, 1989.

11. James R. Muir, Clive Brereton, John R. Grace and C. Jim Lim, "Dynamic

Modeling for Simulation and Control of a Circulating Fluidized Bed Combustor”,

AIChE, v 43, n 5, pp 1141-1152.

12. Bhat, N., Minderman, P., and Jr. Thomas McAvoy, "Modeling chemical process

systems via neural computation", IEEE Control Systems Magazine, v 10, pp 24-

25, 1990.

13. Hunt, K.J., and Sbarbaro, D., "Neural networks for non-linear internal model

control", IEEE Proceedings-D, v 138, n 5, pp 431-438, 1991.

14. Rao Vemuri, Artificial neural networks : concepts and control applications, Los

Alamitos, Calif. : IEEE Computer Society Press, 1992

15. Handbook of intelligent control : neural, fuzzy, and adaptive approaches edited by

David A. White, Donald A. Sofge, New York : Van Nostrand Reinhold, c1992.

16. Neuro-control systems : theory and applications, edited by Madan M. Gupta,

Dandina H. Rao, New York : IEEE Press, c1994

17. Thomas E. Quantrille and Y.A. Liu., Artificial intelligence in chemical

engineering, San Diego : Academic Press, c1991


